Mixed Model (Analysis) Procedures Overview

Linear Models

- · Fixed effects
- · Assumes errors NID
- Least squares (ANOVA, GLM)

Generalized Linear Models

- Fixed effects
- Non-normal (binomial, multinomial, Poisson)
- Iterative techniques (ML, REML implemented in SAS GLIMMIX)

Linear Mixed Models

- Fixed and random effects
- Normal data, can deal with heterogeneity and correlated errors
- Iterative techniques (ML, REML implemented in SAS MIXED)

Generalized Linear Mixed Models

- · Fixed and random effects
- Non-normal (binomial, multinomial, Poisson)
- Iterative techniques (ML, REML implemented in SAS GLIMMIX)

Mixed Model Procedures Model

$$y = X\beta + Zu + e$$

where:

y = a vector of observations

X = design matrix for fixed effects

 β = a vector of fixed effects parameters

Z = design matrix for random effects

u = a vector of random effects parameters

e = a vector of residuals

Mixed Model Procedures

Random Effects

$$E\begin{bmatrix} u \\ e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$Var\begin{bmatrix} u \\ e \end{bmatrix} = \begin{bmatrix} G & 0 \\ 0 & R \end{bmatrix}$$

$$Var(y) = ZGZ' + R$$

Mixed Model Procedures Example

Treatments:

Blocks – 2

Treatments – 2

Samples - 2 (repeated on ij)

Model:

$$Y_{ijk} = \mu + B_i + T_j + \epsilon_{ij} + S_k + TS_{ik} + \epsilon_{ijk}$$

Mixed Model Procedures Example - Observations

$$y = \begin{bmatrix} Y_{111} \\ Y_{112} \\ Y_{121} \\ Y_{122} \\ Y_{211} \\ Y_{212} \\ Y_{221} \\ Y_{222} \end{bmatrix}$$
Observation from the ith block, jth treatment, and kth sample.

Mixed Model Procedures

Example – Fixed Effects

Design Matrix

$$\beta = \begin{bmatrix} B_{1} \\ B_{2} \\ T_{1} \\ T_{2} \\ S_{1} \\ S_{2} \\ TS_{11} \\ TS_{12} \\ TS_{21} \\ TS_{22} \end{bmatrix}$$

μ

Parameters

Mixed Model Procedures

Example – Random Effects

$$Z = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parameters

Design Matrix

Mixed Model Procedures

Example - Residuals

$$e = \begin{bmatrix} e_{111} \\ e_{112} \\ e_{121} \\ e_{122} \\ e_{211} \\ e_{212} \\ e_{221} \\ e_{222} \end{bmatrix}$$
Residual from the ith block, jth treatment, and kth sample.

Repeated Measures Standard Error of a Mean Difference Correlated Measures

$$S_{\overline{x}_1-\overline{x}_2} = \sqrt{(s_p^2 - \sigma_{12}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Mixed Model Procedures Simple Covariance Structure

Repeated	Repeated measure			
measure	time 1	time 2	time 3	time 4
time 1	s ²	0	0	0
time 2	0	s ²	0	0
time 3	0	0	s ²	0
time 4	0	0	0	s ²

Number of parameters = 1

Mixed Model Procedures Unstructured Covariance Structure

Repeated	Repeated measure			
measure	time 1	time 2	time 3	time 4
time 1	s ² ₁	S ₂₁	S ₃₁	S ₄₁
time 2	S ₁₂	s ² ₂	S ₃₂	S ₄₂
time 3	S ₁₃	S ₂₃	s ² ₃	S ₄₃
time 4	S ₁₄	S ₂₄	S ₃₄	s ² ₄

Number of parameters = t(t-1)/2 + t

Mixed Model Procedures Compound Symmetry Covariance Structure

Repeated	Repeated measure			
measure	time 1	time 2	time 3	time 4
time 1	s ² + s ₁	S ₁	S ₁	S ₁
time 2	S ₁	s ² + s ₁	S ₁	S ₁
time 3	s ₁	s ₁	s ² + s ₁	s ₁
time 4	s ₁	s ₁	s ₁	s ² + s ₁

Number of parameters = 2

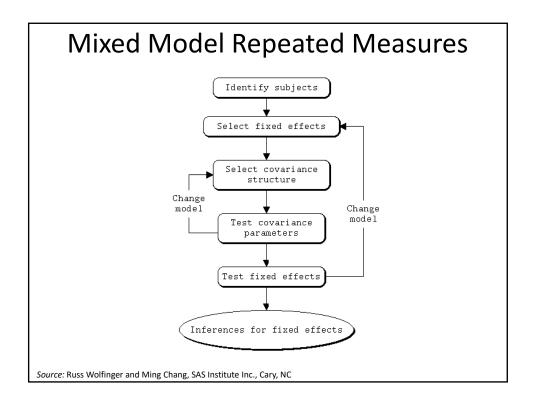
Mixed Model Procedures Toeplitz Covariance Structure

Repeated	F	Repeated	measure	
measure	time 1	time 2	time 3	time 4
time 1	s ²	S ₁	S ₂	S ₃
time 2	S ₁	s ²	S ₁	S ₂
time 3	S ₂	S ₁	s ²	S ₁
time 4	S ₃	S ₂	S ₁	s ²

Number of parameters = t

Mixed Model Procedures Repeated Measures Approach

- First run the analysis using the UN (unstructured) covariance structure.
- Next run the analysis using the compound symmetry (CS) structure.
- Run the analysis with any other covariance structures that seem reasonable.
- Use the model fitting criteria to compare how well the various structures fit the data.
- Select the model that describes the structure with the least number of parameters.



Mixed Model Procedures Covariance Structures

Structure	Number Parameters	Equal Spacing	Random Subject*	Equal Variance	Equal Covariance	Equal Correlation
CS	2	No	No	Yes	Yes	Yes
AR(1)	2	Yes	Yes	Yes	No	No
TOEP	t	Yes	No	Yes	No	No
CSH	t+1	No	No	No	No	Yes
ARH(1)	t+1	Yes	Yes	No	No	No
HF	t+1	No	No	No	No	No
ТОЕРН	2t-1	Yes	No	No	No	No
ANTE(1)	2t-1	No	No	No	No	No
UN	t(t+1)/2	No	No	No	No	No

^{*} Requires Subject = source of variation to be included in the RANDOM statement in PROC MIXED.

Mixed Model Procedures

PROC MIXED Syntax

RCBD Repeated Measures

```
proc mixed;
  class blk trt date;
  model yield = blk trt date
      trt*date /ddfm=satterth;
  <random trt*blk;>
  repeated date / subject=trt*blk
      type=<structure> r rcorr;
run;
```

* Random statement required only for autoregressive structures, AR(1) and ARH(1).

Mixed Model Procedures Model Fitting Criteria

- Residual Log Likelihood (-2RLL)
- Akaike's Information Criterion (AIC)
- Schwartz'z Bayesian Criterion (BIC)

Mixed Model Procedures Model Fitting Criteria

Residual Log Likelihood Ratio Test

$$\chi^2 = \Delta \left[-2RLL \right]$$

$$df = \Delta[\#parameters]$$

Mixed Model Procedures Model Fitting Criteria Example

Model	-2/	Parms
un	432.2605	10
CS	572.6072	2

$$\chi^2 = 576.3460 - 432.2605 = 144.09**$$
9 df
 $\chi^2 = 576.3460 - 572.6072 = 3.74$
1 df

Null model -2RLL= 576.3460 1 Variance component – residual error

Mixed Model Procedures Model Fitting Criteria

- Akaike's Information Criterion (AIC)
 - -21 + 2d
- Schwartz'z Bayesian Criterion-2/ + d ln(n)

d = # parameters

n = # observations (subjects)

Mixed Model Procedures Model Fitting Criteria

Model	-2/	Parms
un	432.2605	10
CS	572.6072	2

<u>Unstructured</u>

$$AIC = -2l + 2d = 432.2605 + 2(10) = 452.3$$

$$BIC = -2l + d \ln(n) = 432.2605 + 10 \ln(27) = 465.2$$

Compound Symmetry

$$AIC = -2l + 2d = 572.6072 + 2(2) = 576.7$$

BIC =
$$-2I$$
 + d ln(n) = 572.6072 + 2 ln(27)= 579.2

Repeated Measures Common Agronomic Examples

Experiment Type:

- Perennial crops
 Forages, Horticultural crops
- Crop rotations
 Cumulative effects of crop sequences
- Long-term experiments
 Experiments repeated over many years at same sites

In each of these cases, observations are made over time from the same experimental unit (plot).

The fixed year effect of the treatment is confounded with random growing season effects (weather, pests) and may not be independent from the plot effect.